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J. Phys. A: Math. Gen. 14 (1981) 901-914. Printed in Great Britain 

Effective potentials for twisted fields 

Richard Banach 
Department of Theoretical Physics, The University, Manchester M13 9PL, UK 

Received 19 September 1980 

Abstract. Minus the density of the effective action, evaluated at the lowest eigenfunction of 
the (space-time) derivative part of the second (functional) derivative of the classical action, 
is proposed as a generalised definition of the effective potential, applicable to twisted as well 
as untwisted sectors of a field theory. The proposal is corroborated by several specific 
calculations in the twisted sector, namely d4 theory (real and complex) and wrong-sign- 
Gordon theory, in an Einstein cylinder, where the exact integrability of the static solutions 
confirms the effective potential predictions. Both models exhibit a phase transition, which 
the effective potential locates, and the one-loop quantum shift in the critical radius is 
computed for the real d4 model, being a universal result. Topological mass generation at the 
classical level is pointed out, and the exactness of the classical effective potential approxi- 
mation for complex d4 is discussed. 

1. Introduction 

Effective potentials, so useful in studying spontaneous symmetry breaking situations, 
were brought to the fore by Coleman and Weinberg (1973) (although the method was 
latent in the work of Jona-Lasinio (1964)) and further developed by several authors 
(Jackiw 1974, Brown and Duff 1975, Iliopoulos et a1 1975). The usual definition 
amounts to 

V ( A )  = - ( l /voL)r(A4o) (1) 

where r is the effective action and &(x) = 1 everywhere. 
This definition makes the effective potential rather impotent in the twisted sectors of 

a field theory, since the only constant twisted field is zero. Thus, if we accept (1) at face 
value, we can at best hope to calculate V(0) in the twisted sector. For reasons to be 
described in 0 2, we generalise (1) by simply changing 4o to the lowest eigenfunction of 
the (space-time) derivative part of the second (functional) derivative of the classical 
action in the sector under consideration. This is evidently equivalent to the usual 
definition in non-twisted sectors. 

Having decided on such a generalisation, it is rather important to verify that it is 
useful and, to this end, specific calculations are presented in $ 0  3 and 4. Now there is 
nothing so reassuring as an exact solution, and so we investigate models which in the 
twisted sector exhibit non-trivial symmetry breaking and critical behaviour at the 
classical level and are in addition exactly soluble there. Clearly, if our generalisation is 
to have any credibility at all, it had better reproduce such behaviour properly before we 
go on to consider closed-loop corrections. We find that it does, and so pass on to 
calculate the one-loop shift in the critical point, this being universal in a sense to be 
described in 0 4. 

0305-4470/81/040901+ 14$01.50 @ 1981 The Institute of Physics 901 



902 R Banach 

The space-time in which we work will be T 0 S1 throughout with the metric 

ds2 = dt2 -- R 2  de2, 8 E [O, 27rJ (2) 

This two-dimensional Einstein cylinder is non-simply connected and therefore admits 
non-trivial twisted and automorphic field configurations (Isham 1978a, b, Banach and 
Dowker 1979, Banach 1980a), which in the case of real scalar fields just means 
antiperiodicity in 0, and for complex scalars, a periodicity condition like 

( 3 )  

where a is arbitrary and specifies a distinct sector of the theory. The models we discuss 
are two-phase qh4 theory, two-phase Iq5 l4 theory and wrong-sign-Gordon theory. 

( t ,  277) = e2T1a4 ( t ,  0 )  

2. The generalised effective potential 

We begin by writing down some familiar formulae, more to fix notation than anything 
else; the reader who does not know what they mean will find adequate explanation in 
the effective potential references cited above or in Abers and Lee (1973); q5 denotes 
some multiplet of scalar fields for definiteness. 

ar/m = -J. (7) 

r(0) is the effective action. It has a functional Taylor series expansion which displays 
the 1PI proper vertices of the theory governed by the action S :  

where QG is the ground state of the theory given by 

Alternatively, we may change variables and go to momentum space. By momentum 
space in this context we mean little more than the spectrum of the derivative terms in 
S2S/Sq52. As a general rule they will constitute a self-adjoint operator in a Hilbert space 
of functions belonging to a given sector of the field theory (we don’t mean to be too 
precise about this here), which will have a spectral decomposition, and we can write 
heuristically 

Q = C a,f, 
n 

where the f ,  are eigenfunctions and the a, are some coefficients. 
Equation (8) then becomes 

a;, . . . a;” 
“ 1  r(@)=r(w)+ 1 - 

, = I  n !  6a ;,...6ain 
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where 

@=@’+E a,f, 
n 

and we have allowed for the possibility that @’ is not the ground state. 
Now suppose that the ground state of the theory is @G = 0; then, setting @ = A @ ’  

where @’ is any function, we will find that r(@) = T(A@’) will have a minimum at A = 0: 

Thus any  ray through the origin in function space will locate the correct vacuum state. 
However, if Q G # O  is the ground state, only the ray will locate the true 
vacuum, i.e. 

and not only will (14) hold at this point in function space, but so will (9). Unfortunately, 
as a rule, we don’t know @G. 

The customary escape from this impasse in untwisted sectors (the only ones where it 
is applicable) is to use symmetry arguments. It is stated that one is only interested in 
cases where the vacuum expectation value of q!I is translationally invariant, which 
immediately cuts down the problem to an essentially one-dimensional one-to search 
for QG within the ray of constant fields. Since, in general, the lowest states of a quantum 
theory carry the simplest representations of any symmetry groups that may be available, 
and a constant carries the trivial representation of the translation group, this turns out to 
be a very good choice. 

Can one then mimic the above behaviour in more general contexts where constants 
are suppressed for topological reasons? Clearly we want a family of functions to try, for 
which the symmetry behaviour is as simple as possible. In  addition, we would like as 
little contribution as possible from the derivative terms in the action, since these only 
help to raise the energy. The origin of momentum space (as defined above) seems to be 
a reasonable place to look; accordingly we define our generalised effective potential as 

where VOL is the volume of space-time and q!Io is an eigenfunction belonging to the 
lowest eigenvalue of the derivative terms of S2S/Sq!12 which we henceforth call the 
lowest momentum state. 

A disclaimer is immediately called for. We do not pretend that some multiple of q!Io 
will be the ground state of the system. In fact, if V(A) has a minimum for some non-zero 
value of A ,  A. say, then s~/s@~@=A,&, will in general not be zero, i.e. there will be 
contributions at the true ground state from the other eigenvalues of the kinetic terms. 
However, particularly in symmetry restoration contexts, it will be shown that there is a 
regime, near the critical point, in which the higher terms in (1 1) (with @‘ set to A&) can 
be neglected, and that the first term (itself in the one-loop approximation) gives the 
leading behaviour, i.e. that (15) contains some useful physics. 

In this connection, we can ask what difference expansion about an approximate 
rather than true ground state makes to the effective action. The answer is - surpris- 
ingly little. Thus let us suppose that qhC is a stationary point of the classical action, 

SS/Sq!II+=+c+J=O, (16) 
making q!Ic a functional of J. In the region of small J (since we want to turn off the 
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external source eventually) let E ,  given by 

40 = 4 c +  8 ,  (17) 

be small where do is some fixed field about which we want to expand Z ( J )  near J = 0. 
We can perform the one-loop integration as usual -it just has an extra linear piece in 
the exponential - finding 

W ( J )  = S ( q 5 0 ) + J 4 0 - & S f ’ ( 4 0 ) ~  + i S ’ f ’ ( 4 0 ) ~ 3 .  . . +iih Tr In Sf’(&). (18) 

Remembering that is independent of J ,  we find 

a, = 40 - E  - E2S”’(4,)[1 -;(Sfy(bo))-l] . . . 

r(@) = S(Q) +iih Tr [In S”(Ca) + (S f ’ (@) ) - ’S f ’ ’ (@)~]  

(19) 

whence 

(20)  

correct to O ( ~ E )  and to second order in E .  Thus there is little change introduced by a 
small shift in the point about which we integrate. This is because the error is effectively 
one in the external source, which then cancels in leading orders in the Legendre 
transformation. 

In the following sections of this paper we will only calculate the usual one-loop 
expression for the effective action (i.e. the first two terms of (20)). This will imply the 
presence of some external source J if @ is not the correct extremum of r. At the critical 
point, this will disappear, but even away from the critical point the implied J will be 
negligible provided E - h ,  

3. 44 theory 

We consider, in the twisted sector, thc model given by the action 

This model was investigated in depth at the classical level by Avis and Isham (1978) and 
we merely restate the most relevant facts here, referring to the original paper for further 
details. 

For static solutions, the equation of motion is exactly soluble and the stable ground 
state solution is given as follows; 

d G = O  if R s (2ha)-’ ,  ( 2 2 a )  

where sn is a Jacobi elliptic function (Abramowitz and Stegun 1964) and w is given by 

The phase transition occurs (classically) at R = (2Aa)-’ = R:, at which point we see that 
w, which is a constant of integration, is a*.  A notable point is that q5G is uniformly 
continuous in R. 
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Now we treat the same system using the effective potential method suggested above. 
The lowest momentum state of the action (21) is the lowest mode of 

d2 1 d2 
at2 R 2  86’ 

which, under the circumstances, is A cos[+(6 + &)I. To evaluate the effective potential 
in tree approximation we simply insert this into‘ (21 ) ,  evaluate the result, divide by 
27~R dt  and change the overall sign. The answer is 

Vo(A) = :[A 2~ + A ’( 1 /4R - A ’ U  2, + ;A 2A4] (24)  

and we see the classical phase transition displayed in standard Landau fashion, which is 
to say that for R < R: the minimum of Vo is at zero, while for R > R: the minimum is at 
some non-zero field. For R < R: the solution is clearly exact, i.e. the minimum of Vo 
identifies the true ground state 4jG = 0, while for R > R: the minimum gives an 
approximation to the ground state - an increasingly good one the nearer one goes to 
R:, as can most simply be seen by the limiting behaviour of sn(6; m )  as m + 0, in which 
limit it becomes sin 6. Clearly, the phase transition is being dominated by long- 
wavelength phenomena which we have simply highlighted. 

At this point, it is appropriate to comment on our choice of trial field q50. Had we 
chosen a field with some admixture of shorter-wavelength components, the implied 
phase transition would have been at a different point; the coefficient of R-2 in (24)  
would have been a number exceeding $ unless the trial field just happened to reduce to 
A cos[;(6 + eo)] at R = R:. In this respect, the choice of ‘lowest momentum state’ as 
trial field has served us remarkably well in view of the rather vague reasons used in 
making it. 

Heartened by our success at tree approximation and encouraged by the limiting 
exactness of our method near the phase transition, we proceed to tempt providence at 
the one-loop level. 

The Euclideanised second derivative of the action (21) evaluated at A cos(i6) is 

a2 1 a2 
= -R -7-7 y - A 2 a 2 + 3 A 2 A 2  cos2(q6))S(x, y )  ( 2 5 )  

S 2 S  
84 ( X ) W  ( Y )  ( df  R 86 

and the one-loop correction to the effective potential is given by 

which we define (given that it is divergent) by zeta function regularisation 

where the A i  are the eigenvalues of S” and L is a length scale introduced for 
renormalisation purposes. 

Now (25 )  may be related to a Mathieu equation for which the eigenvalues are known 
as series in the coefficient of the trigonometric term. This means that we can find the 
spectrum of (25 )  as a set of power series in A’ (some of the details are described in the 
Appendix) if we separate variables and assume eiw‘ behaviour for the time variable. The 
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expression we have to evaluate then becomes (absorbing a minus sign into the definition 
of L )  

V 1 (A)=--- -' f t  ((L)s(x) l d w  2 r r R T 2 d s  R 257 

x [:( 1 + 3 R 2 A 2 A 2  - gR4A 4A4) + R 2 w 2  + R2A '(:A2 - u ~ ) ] ~  

+ [:( 1 - 3 R 2 A 2 A 2  -zR4A4A4) + R 2 w 2  + R2A 2(2A2 - 

m = l  2 [ ( 2 m  t 1y - 13 

lsls=o + R 'A '(;A - a 2, 

to the required order in A2. Equation (28 )  is an analytic function of A2 at A2 = 0, so 
after performing the integral over w which is elementary, we can expand in A2+, The 
coefficients in the series (to O(A4)) involve summations like 

(29 )  

which can be expressed as summations of Riemann zeta functions by expanding in 
powers of R A a -a strategy which exposes their singularity structures to the naked 
eye. The poles in (29 )  at the relevant points are cancelled by a r(--s)-' factor from the w 
integration and the overall expression for V'(A)  is finite. 

The final expression for V' (A)  consists of two parts. The first comes from the first 
two terms in (28 ) ,  which themselves are a consequence of the special form, to this order, 
of the lowest two eigenvalues of the Mathieu operator (see the Appendix), 

Vh(A) = ( r 2 / 4 ~ R ~ ) { - ( l -  4 R 2 A  'a2)l/ '  - 3 A 2 R 2 A  2(1 - 4 R 2 A  2 a 2 )  -*I2 

2 2 2  

i - iA4R4A4[45(1  - 4R2A2u2)-3/2 + g(1- 4 R 2 A 2 a 2 ) -  ' I 2  11, (30) 

and the second comes from the summation in (28 ) ,  which accounts for all the other 
eigenvalues, 
Vk [A)  = (ft/2.1rR2) [ s - R  2 2 2  A U ( 2 K  -$ ) -$Q(2 ,  -I)] 

4 4 4  

L 
+ A 2 R 2 A 2 [ 3 K - 3 Q ( 1 ,  111-A R A (9Q(O, 3 )  

[ ( l  -2-13+2(f+r)1)i[3 +2(1+ r ) ] -  l ] ) ]  (31) 
9 - O0 ( -4R2A2a2) '  

+-Jrr 1 
8 r , l = O  r(i t i)r(-i- I )  

where 

and 

t Reversing the order of these steps gives a slightly more compact form for the final expression which, 
however, has the disadvantage of obscuring somewhat the singularity structure evident in (30). 
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Actually this is not quite the whole story. There is in addition the contribution 

Vk ( A )  = (Ah2/87r)($A2- a2)  In (LIR) .  (34) 

The terms in (34) are a mass term and a vacuum energy (Casimir) term which we 
renormalise away by adding the counterterms 

:Sm242 + S; (35) 

(where Sm2 and Sc are both O(A)) to the classical Lagrangian density in (21), and the 
final answer is the one we would have obtained by setting L to R in (28). This procedure 
is equivalent to the usual practice of consistently setting the mass etc to given quantities 
at some chosen momentum scale. 

Were it not for the factor of 3 in (34), we could have achieved both renormalisations 
by a shift a'+ a'+ Sa2 in the classical Lagrangian, as is clear by examining how this 
replacement affects the classical effective potential (24). However, not only is the factor 
of 3 really there (it is the same factor of 3 that appears in (25)) but setting a2  = 0 obviates 
the need for the Casimir term while leaving the mass term unaffected. So this proposal, 
though tempting, is inappropriate. 

Our final expression for the effective potential thus becomes (all constants now 
being renormalised ones) 

V ( A )  = V"(A) + VA ( A )  + V& ( A ) .  (36) 

This expression, though frankly a mess when written out in full detail, has several 
features worthy of note. 

(i) To the given order in A (i.e. fourth) it is exact. This is pleasing in view of the fact 
that we have exact expressions for neither the eigenvalues of 6 2 S / S 4 2  nor the 
subsequent zeta function. Everything is due to the fact that these quantities have power 
series expressions which are regular at A = 0. Other approaches to the eigenvalue 
problem (e.g. the asymptotic method of Dikii (1961)) would not have given the correct 
form without much further effort, if at all. 

(ii) At  no stage in the derivation of (36) were we ever explicitly confronted with the 
problem of zero-frequency translation modes. As has been pointed out above, the fact 
that we are not expanding around the ground state implies the presence of a non-zero 
space-dependent J in the system, which is here responsible for breaking translation 
invariance. 

(iii) Our expression becomes complex for R > R: and A small enough. It is clear 
from (28) and (30) that this behaviour sets in when the lowest eigenvalues of S 2 S / S 4 2  at 
4 = 0 become negative, other eigenvalues following suit at larger values of R. Dolan 
and Jackiw (1974), in their discussion of symmetry restoration at finite temperature, 
also find the one-loop effective potential to be complex for small 4. They attribute this 
to the breakdown of the one-loop approximation and confirm it by a large-N limit 
calculation. However, our case, unlike theirs, has a regime ( R  < R:)  where the 
one-loop expression is unexceptionable and so presumably reliable, giving a sensible 
value for the critical radius (see below), so it may be that some other effect is 
responsible. For instance, complex effective actions are usually associated with decay 
situations and particle production, so it may be that there is simply no real J that gives 
rise to the relevant 0 for R > R: and that such a 0 is consequently unstable. 

This phenomenon should not be confused with the consequences of zero-frequency 
modes, two of which happen to appear at 4R2A2a2 = 1, A = 0 but nowhere else. 
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(iv) Despite superficial appearances to the contrary, the sign of A4 in (31) is 
positive, since the first terms of the summations in its coefficient are negative and each 
term is typically an order of magnitude down on its predecessor. We are therefore not 
imperilled by instability against unconstrained growth of @. 

(v) We can examine limiting cases of the theory. As A + O ,  A + 0 the theory 
becomes that of a massless twisted scalar field in T 0 S' and the limiting value of the 
effective potential, namely -h /48rRZ,  is the correct one to give agreement with the 
total energy calculated for this system by Dowker and Banach (1978) and Isham 
(1978a). If we let R + CO, keeping RA finite, the whole expression vanishes as we would 
expect. If we set a2  to 0, we have a massless twisted 44 theory, and we see clearly 
topological mass generation not only at the one-loop level (cf Ford and Yoshimura 
1979) but at the classical level as well. This is clear from the A * + 0 limit of the classical 
potential (24) which is A2/16R2.  Thus, in the absence of any potential in the 
Lagrangian, we get a minimum quadratic contribution to the effective action, which is 
therefore interpretable as a mass term (any other non-zero twisted field would give an 
even bigger contribution). The topological mass to one-loop level is then ( a 2  is still 
zero) 

m; = 1/8R2-(3AA2/n-)($+K). (37) 

(vi) The universal covering space of T 0 S' is two-dimensional Minkowski space. 
In a recent publication (Banach 1980b) it was suggested that the renormalisation 
procedures in multiply connected spaces should be the same as in their universal covers. 
Thus we ought to compare our results with, say, kink renormalisation in R2 (e.g. 
Rajaraman 1975), and indeed we find that a vacuum and mass (but no coupling 
constant) renormalisation are required for the kink. It is more difficult actually to 
compare the counterterms themselves, since different regularisation procedures were 
used in the two calculations and in addition the fundamental group involved is infinite, a 
case (strictly speaking) not covered in the paper referred to. 

The effective potential (36) enables us to compute the one-loop correction to the 
critical radius. The critical radius is that value of R which makes the coefficient of A2 in 
(36) vanish. If we neglect the small corrections due to the term Q(1, 1) in (31), we 
obtain a cubic equation for R 2  which can be solved exactly. The leading behaviour of its 
real root yields 

A2 1 / 3  R = L [ 1 - ~ - 4 . 0 6 ( 7 )  AK ,,.I. 
' 2Aa a n- a n -  

Note that R: has been decreased. This must be a pure quantum effect (quite apart from 
the factors of A)  since, as we have remarked above, classical effects can only increase RZ. 
It is also extremely fortunate in view of the complex nature of V1(A) above R:. Further 
remarks on (38) are postponed to the discussion. 

Finally in this section, we will consider a complex 4 4  model given by the action 

for which there is a one-parameter family of automorphic sectors labelled by a 
parameter a and specified by the periodicity condition (3), a consequence of the O(2) 
symmetry of the theory. They interpolate smoothly between the standard (a  = 0) and 
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'maximally twisted' (a  = 4) cases. The equation of motion following from (39) is 

which for static solutions is exactly soluble with the ground state (in the sector given by 
(3)) 

d G = O  if R s a /Aa ,  (41a)  

if R 2 a'/ha. (41b) 
& = ( a  2 - a 2 / A  2 R )  2 1 / 2  e ia8 

Actually, a detailed stability analysis of (41) has not been carried out by the author, but 
the similarity to the real scalar field is strong enough for us to be confident of the results. 
The classical critical radius is thus 

R:(a )  = a'/Aa. (42) 

The effective potential approach offers a surprise in this model. The lowest momentum 
state is A e'"', which is of the form of (41b), so that the effective potential approach will 
be exact here. Inserting this into 639) and dividing by minus the volume, we have 

(43) 

Vo thus predicts the phase transition correctly and, further, the amplitude of the 
optimal ground state, given by dVo/dA = 0, is also correctly given to agree with (41b). 

While: the one-loop corrections are unavailable (we would have to solve a coupled 
eigenvalue problem), the classical approximation is already very useful. The lowest 
momentum approximation to the ground state is exact, just as it is for untwisted fields in 
familiar cases, and the smooth interpolation we find from untwisted to twisted sectors 
gives us added confidence that our proposal for a twisted effective potential is physically 
credible, 

Vo(A) = L  2 [ ~ A  a + A (a' 2 / R  - A ' a  ') + :A 2A4]. 

4. Wrong-sign-Gordon theory 

Wrong-signGordon theory is given by the action 

S = R /  d r & ' d 0 ~ ~ ~ 2 - ~ 4 r 2 - ~ [ 1 + ~ ~ ~ ( A ~ ) ~ )  1 m 2  
2 R  A 

or, equivalently, the equation of motion 

sin(A4) = 0 
a2d 1 a24 m 2  
at2 R' a02 A 

(44) 

(45) 

which differs from conventional sine-Gordon theory in the sign of the sine. Had we 
retained the original sign, there would have been no sign of the phase transition it is our 
design to display. 

For static solutions, (45) readily yields a first integral 

qhr2= C+(2R2m2/A2)[1  +cos(A4)]. (46) 
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The substitution t2 = 1 - cos(Aq5) then gives us 

Bearing in mind that C < 0 (since q5' must have a zero somewhere in [ 0 , 2 ~ ] ) ,  we can 
evaluate (47) with the help of Abramowitz and Stegun (1964) and find 

q5 =(1 /A)cos - ' [ l -2 (1 -w)sn2(Rm(O+~o) ;  1 - w ) ]  (48) 
where 

w = -CA2/4R2m2. (49) 

The antiperiodicity requirement fixes w to be the largest solution satisfying 0 s w 4 1 of 

As MI -+ 1 the solution (48) tends to zero, which happens when 

This then is the classical critical point below which the stable ground state is the zero 
field. A detailed stability analysis of the solution has again not been carried out by the 
author, but the behaviour is so similar to that of the b4 model that he once more feels 
confident. Added confirmation of this comes via the R -+CO, Rm =constant limit of the 
theory where w -+ 0, and the solution (48) reduces to 

4m = ( 1 / A )  cos-'{l-2 tanh2[Rm(0 + e,)]} 
= (1/A)[j4 tan--'{exp [Rm(O + &)I}- .rr] (52) 

which is the usual sine-Gordon soliton allowing for the unconventional sign, as one 
would expect. 

We can now see how the effective potential method fares in this case. The lowest 
momentum state is again A cos[$(O + 00)], We put this into (44), make the sign and 
volume adjustments and find 

V o ( A )  =A2/16R2+(m2/A2)[1+Jo(AA)] .  ( 5 3 )  

The convexity of A2 competes with the local concavity of J0 near the origin, and we 
again find that the phase transition occurs at precisely the correct point, namely R:, 
However, unlike the q54 model, as we increase R further, other minima of the potential 
appear besides the double-well ones as more of the oscillations of Jo survive the 
debilitating effect of the A2 term. These minima presumably correspond to familiar 
multi-soliton solutions of sine-Gordon theory. 

We may remark at this stage that had we retained the conventional sign in (44), the 
sign of the .To in (53) would have been negative, destroying the competition and with it 
the phase transition. 
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To consider the one-loop corrections, we write down the required second deriva- 
tive: 

. . .) A2A2 3h4A4 l--+- 
192 

a2 1 a2 - - .-R m2 1 at2 R 2  dfI2 

Taking it that a 2 / a t 2  merely contributes an w 2  term, w e  are left with a case of Hill's 
equation. An examination of the general formulae for the solution of this eigenvalue 
problem (McLachlan 1947, p 135) yields the following information. The lowest order 
to which the cos 26' term contributes is A6, so it may be ignored if we only work to A4.  
We are now left with a Mathieu operator. Rather than go through a similar analysis to 
that for the 4 4  model, producing an equally opaque final result, we note the following. 
The A4 terms in the constant and cos 6' terms in (54) themselves only contribute at A 4  
and above. Therefore, to find the critical radius for which we only need the A2 term, we 
can drop these corrections. This procedure is now equivalent to dropping the cos4(+@) 
term in (54) in its entirety, and we see that what is left has entirely the same structure as 
(25 ) .  To obtain the effective potential, correct to A2,  we therefore merely have to make 
the substitutions 

A 2 +  A2m2/6, 

a 2  .+ 6 l A  '. 
The quantum corrected critical radius is thus 

t i 2 h 4  113 

R c = i [ l - ~ - 1 . 2 3 ( ~ )  2m 67r 7r ...I 
and we can now see how the critical radius is a universal result. Given any classical 
potential V(ql), satisfying a2V/&$214=o<O: in the twisted sector of T 0 S1 with the 
standard kinetic terms, we will find that the second derivative of the action at 
ql = A cos(i6') will have an expansion like (54). While the numerical coefficients may be 
different, the power-counting arguments above will continue to hold, and we will find 
that we can drop all but the constant and cos2(&l) terms. Simple replacements like (55) 
will then give the correct critical radius. This completes our discussion of wrong-sign- 
Gordon theory. 

5. Discussion 

In the preceding sections we have made out what is, to the author's mind, a strong case 
for a generalised effective potential. Most of the corroboration, as we have seen, took 
place at the classical level where there were non-trivial classical solutions to check 



912 R Banach 

against. Features have emerged which are very reminiscent of condensed matter 
theory, namely fractional powers of coupling constants (and, by rescaling, of h)  in 
expressions for the critical radius (more commonly, the inverse critical temperature) 
and ‘universality’ of parameters characterising the phase transition. Several further 
points do however suggest themselves. 

(1) Does the method still give good answers when there is non-trivial time depen- 
dence in the lowest momentum state which would, among other things, produce a 
difference between the classical energy and the classical action? 

(2) Does the method still give the best answers when there is a non-trivial quadratic 
part in the Lagrangian? In the examples above, there was no essential difference (other 
than a shift in eigenvalue) between taking the lowest momentum state and the lowest 
eigenfunction of the quadratic part of the Lagrangian. Would the latter prescription 
yield better results if there was (say) a non-trivial conformal coupling, CR42, in the 
action? 

(3) How do we systematically improve upon our lowest-order guess for the ground 
state QG in the absence of translation-invariance type arguments? For instance, would 
the inclusion of more degrees of freedom (i.e. higher momentum contributions) 
significantly improve the one-loop values (as opposed to the classical values) or not? 

(4) What is the true significance of the complex nature of V ( A )  above the classical 
phase transition? It is clear that it signals some sort of perturbative inadequacy or 
instability in the theory, but the details of the process responsible are far from evident 
and the issue deserves further elucidation. Perhaps the best prospect for this lies with 
the wrong-sign-Gordon model, where we would hope for a more complete quantum 
solution by analogy with sine-Gordon theory in two-dimensional Minkowski space. 
This possibility will be explored in a subsequent paper. 

Despite these points, it should nevertheless be the case that our determination of the 
critical radius is exact, since at the critical radius the ground state is exactly zero and thus 
small errors in the classical field above the critical radius should be insignificant to the 
order to which we have calculated. 

The way is now open for investigating other models using the methods presented 
here. We have been lucky in our present investigation, insofar as non-trivial twisted 
field effects typically happen at one order less in the coupling constant than for standard 
fields, e.g. symmetry restoration, occurrence of fractional powers of coupling constants 
in R,, topological mass generation. This has enabled us to build up confidence by 
comparison with exact results. 

We now ought to investigate further the complex d4 model to one-loop, where first 
indications suggest that the corrections diverge in the untwisted limit (I am indebted to 
R Critchley for this information). We ought also to tackle models that have been 
treated by other means in the literature, especially those which have been found to be 
unstable at zero field, namely the interaction of an untwisted and a twisted scalar field in 
S’ 0 R3 (Toms 1980, Ford 1980b) and QED in S1 0 R3 (Ford 1980a, b). All of these are 
multicomponent systems and, to determine the one-loop corrections, coupled eigen- 
value problems have to be solved. If, as here, all that is required is the first few terms, 
then no serious difficulty is encountered if one employs the methods used for the 
Mathieu equation (see e.g. McLachlan 1947). 

In conclusion, the method advocated here shows promise of elucidating twisted 
sectors away from zero field. Although not exact in general, it has shown itself to be 
very good in the critical region and so to be a reliable guide to at least the qualitative 
behaviour of a theory. 
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Appendix 

For the sake of completeness, we collect together some formulae pertaining to the 
Mathieu equation, to enable the reader better to understand formula (28). Mathieu's 
equation is 

- d2y/dz2 + 2q COS ( 2 2 ) ~  = py. (AI) 

It is assumed that y and p have power series expansions in q, and equating powers of q 
then yields the explicit forms (see McLachlan 1947). The periodicity requirement 
makes (Al )  into an eigenvalue problem, the standard solutions having period 2n- and 
satisfying 

(-42) 

It is the ones belonging to (-)" in (A2) that we need, as the re-expression of (25) in terms 
of 2u = 6' rapidly shows. The required eigenvalues are 

y ( z  + nn-) = ( i ) "y (z ) .  

1 2  p = l - q - g q  . . . ,  

p = l + q - g  * . .  (A31 
1 2  

and 

doubly degenerate, m 2 1, 

Comparison of (A l )  and (25) eventually leads to (28). 
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